Learn R Programming

extremogram (version 1.0.2)

bootconf2: Confidence bands for the sample cross extremogram

Description

The function estimates confidence bands for the sample cross extremogram using the stationary bootstrap.

Usage

bootconf2(x, R, l, maxlag, quant1, quant2, type, par, start = 1, cutoff = 1, alpha = 0.05)

Arguments

x
Bivariate time series (n by 2 matrix).
R
Number of bootstrap replications (an integer).
l
Mean block size for stationary bootstrap or mean of the geometric distribution used to generate resampling blocks (an integer that is not longer than the length of the time series).
maxlag
Number of lags to include in the extremogram (an integer).
quant1
Quantile of the first time series to indicate an extreme event (a number between 0 and 1).
quant2
Quantile of the second series to indicate an extreme event (a number between 0 and 1).
type
Extremogram type (see function extremogram2).
par
If par = 1, the bootstrap replication procedure will be parallelized. If par = 0, no parallelization will be used.
start
The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 1).
cutoff
The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).
alpha
Significance level for the confidence bands (a number between 0 and 1, default is 0.05).

Value

Returns a plot of the confidence bands for the sample cross extremogram.

References

  1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.
  2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

Run this code
# generate a GARCH(1,1) process
omega  = 1
alpha1 = 0.1
beta1  = 0.6
alpha2 = 0.11
beta2  = 0.78
n      = 1000
quant  = 0.95
type   = 1
maxlag = 70
df     = 3
R      = 10
l      = 30
par    = 0
G1     = extremogram:::garchsim(omega,alpha1,beta1,n,df)
G2     = extremogram:::garchsim(omega,alpha2,beta2,n,df)
data   = cbind(G1, G2)

extremogram2(data, quant, quant, maxlag, type, 1, 1, 0)
bootconf2(data, R, l, maxlag, quant, quant, type, par, 1, 1, 0.05)

Run the code above in your browser using DataLab