if (FALSE) {
data(word_recognition)
data <- make_eyetrackingr_data(word_recognition,
participant_column = "ParticipantName",
trial_column = "Trial",
time_column = "TimeFromTrialOnset",
trackloss_column = "TrackLoss",
aoi_columns = c('Animate','Inanimate'),
treat_non_aoi_looks_as_missing = TRUE )
response_window <- subset_by_window(data, window_start_time = 15500, window_end_time = 21000,
rezero = FALSE)
# identify clusters in the sequence data using a t-test with
# threshold t-value of 2
# (note: t-tests require a summarized dataset)
response_time <- make_time_sequence_data(response_window, time_bin_size = 500, aois = "Animate",
predictor_columns = "Sex",
summarize_by = "ParticipantName")
time_cluster_data <- make_time_cluster_data(data = response_time,
predictor_column = "Sex",
aoi = "Animate",
test = "t.test",
threshold = 2
)
# identify clusters in the sequence data using an lmer() random-effects
# model with a threshold t-value of 1.5.
# random-effects models don't require us to summarize
response_time <- make_time_sequence_data(response_window, time_bin_size = 500, aois = "Animate",
predictor_columns = "Sex")
# but they do require a formula to be specified
time_cluster_data <- make_time_cluster_data(data = response_time,
predictor_column = "SexM",
aoi = "Animate",
test = "lmer",
threshold = 1.5,
formula = LogitAdjusted ~ Sex + (1|Trial) + (1|ParticipantName)
)
}
Run the code above in your browser using DataLab