assetsFit(x, method = c("st", "snorm", "norm"), title = NULL,
description = NULL, fixed.df = NA)
assetsSim(n, dim = 2, model = list(mu = rep(0, dim), Omega = diag(dim),
alpha = rep(0, dim), df = Inf), assetNames = NULL)
as.matrix
to an object of
class matrix
.method="st"
denotes a multivariate skew-Student-t distribution,
method="snorm"
a multivariate skew-Normal distribution, and
method="no
mu
a vector of mean values, one for each asset series,
Omega
the covariance matrix of assets,
alpha
the skewness vector, and
df
the number of degrees of freedom which is adim
allowing
for modifying the names of the individual assets."fASSETS"
object."fASSETS"
object.NA
, the default, or a numeric value assigning the
number of degrees of freedom to the model. In the case that
fixed.df=NA
the value of df
will be included in the
optimization process, assetsFit()
returns a list with two entries, the parameters param
and
fit
.
param
is again alist with the fitted distributional parameters,
param=list(mu, Omega, alpha, df
.
fit
is a list which contains the returned values from the
sn
fitting function. For details we refer to the manual of
the sn
package.
Note that the param$model
entry can be used as input to the
function assetsSim
for simulating a similar portfolio of
assets compared with the original portfolio data.
assetsSim()
returns a signal series (S4 time Series object) of simulated assets.assetsFit
for the parameter estimation uses code
based on functions from the contributed packages "mtvnorm"
and
"sn"
for fitting data to a multivariate Normal, skew-Normal,
and/or skew-Student-t distribution.Azzalini A. (1986); Further Results on a Class of Distributions Which Includes the Normal Ones, Statistica 46, 199--208.
Azzalini A., Dalla Valle A. (1996); The Multivariate Skew-normal Distribution, Biometrika 83, 715--726.
Azzalini A., Capitanio A. (1999); Statistical Applications of the Multivariate Skew-normal Distribution, Journal Roy. Statist. Soc. B61, 579--602.
Azzalini A., Capitanio A. (2003); Distributions Generated by Perturbation of Symmetry with Emphasis on a Multivariate Skew-t Distribution, Journal Roy. Statist. Soc. B65, 367--389. Genz A., Bretz F. (1999); Numerical Computation of Multivariate t-Probabilities with Application to Power Calculation of Multiple Contrasts, Journal of Statistical Computation and Simulation 63, 361--378.
Genz A. (1992); Numerical Computation of Multivariate Normal Probabilities, Journal of Computational and Graphical Statistics 1, 141--149. Genz A. (1993); Comparison of Methods for the Computation of Multivariate Normal Probabilities, Computing Science and Statistics 25, 400--405. Hothorn T., Bretz F., Genz A. (2001); On Multivariate t and Gauss Probabilities in R, R News 1/2, 27--29. Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC -
# Load Swiss Pension Fund Data as Percentual Returns:
LPP <- 100 * LPP2005REC[, 1:3]
head(LPP)
## assetsFit -
# Fit a Skew-Student-t Distribution:
fit <- assetsFit(LPP)
# Show Model Slot:
print(fit$param)
## assetsSim -
# Simulate set with same statistical properties:
set.seed(1953)
LPP.SIM <- assetsSim(n=nrow(LPP), dim=ncol(LPP), model=fit$param)
colnames(LPP.SIM) <- colnames(LPP)
head(LPP.SIM)
Run the code above in your browser using DataLab