skewness returns value of skewness,
kurtosis returns value of kurtosis,
basicStats computes an overview of basic statistical values,
rowStats calculates row statistics,
colStats calculates column statistics,
rowAvgs calculates row means,
colAvgs calculates column means,
rowVars calculates row variances,
colVars calculates column variances,
rowStdevs calculates row standard deviations,
colStdevs calculates column standard deviations,
rowSkewness calculates row skewness,
colSkewness calculates column skewness,
rowKurtosis calculates row kurtosis,
colKurtosis calculates column kurtosis,
rowCumsums calculates row cumulated Sums,
colCumsums calculates column cumulated Sums. }
For SPLUS Compatibility:
stdev Returns the standard deviation of a vector or matrix. }stdev(x, na.rm = FALSE)skewness(x, ...)
## S3 method for class 'default':
skewness(x, na.rm = FALSE, method = c("moment", "fisher"), ...)
## S3 method for class 'data.frame':
skewness(x, \dots)
## S3 method for class 'POSIXct':
skewness(x, \dots)
## S3 method for class 'POSIXlt':
skewness(x, \dots)
kurtosis(x, ...)
## S3 method for class 'default':
kurtosis(x, na.rm = FALSE, method = c("excess", "moment", "fisher"), ...)
## S3 method for class 'data.frame':
kurtosis(x, \dots)
## S3 method for class 'POSIXct':
kurtosis(x, \dots)
## S3 method for class 'POSIXlt':
kurtosis(x, \dots)
basicStats(x, ci = 0.95)
rowStats(x, FUN, na.rm = FALSE, ...)
rowAvgs(x, na.rm = FALSE, ...)
rowVars(x, na.rm = FALSE, ...)
rowStdevs(x, na.rm = FALSE, ...)
rowSkewness(x, na.rm = FALSE, ...)
rowKurtosis(x, na.rm = FALSE, ...)
rowCumsums(x, na.rm = FALSE, ...)
colStats(x, FUN, na.rm = FALSE, ...)
colAvgs(x, na.rm = FALSE, ...)
colVars(x, na.rm = FALSE, ...)
colStdevs(x, na.rm = FALSE, ...)
colSkewness(x, na.rm = FALSE, ...)
colKurtosis(x, na.rm = FALSE, ...)
colCumsums(x, na.rm = FALSE, ...)
"moment" or "fisher", kurtosis
allows in addition for "excess". If "excess" is
skewness
kurtosis
return the value of the statistics, a numeric value. An
attribute which reports the used method is added.
basicsStats
returns data frame with the following entries and row names:
nobs, NAs, Minimum, Maximum , 1. Quartile, 3. Quartile,
Mean, Median, Sum, SE Mean, LCL Mean, UCL Mean, Variance,
Stdev, Skewness, Kurtosis.
rowStats
rowAvgs
rowVars
rowStdevs
rowSkewness
rowKurtosis
rowCumsum
compute sample statistics by column. Missing values can be
handled.
colStats
colAvgs
colVars
colStdevs,
colSkewness
colKurtosis
colCumsum
compute sample statistics by column. Missing values can be
handled.## SOURCE("fBasics.3A-BasicStatistics")
## basicStats -
# Simulated Monthly Return Data:
tS = timeSeries(matrix(rnorm(12)), timeCalendar())
# ... must be univariate:
basicStats(tS)
## mean -
## var -
## skewness -
## kurtosis -
# Mean, Variance:
mean(tS)
var(tS)
# Skewness, Kurtosis:
class(tS)
skewness(tS)
kurtosis(tS)Run the code above in your browser using DataLab