skewness
returns value of skewness,
kurtosis
returns value of kurtosis,
basicStats
computes an overview of basic statistical values,
rowStats
calculates row statistics,
colStats
calculates column statistics,
rowAvgs
calculates row means,
colAvgs
calculates column means,
rowVars
calculates row variances,
colVars
calculates column variances,
rowStdevs
calculates row standard deviations,
colStdevs
calculates column standard deviations,
rowSkewness
calculates row skewness,
colSkewness
calculates column skewness,
rowKurtosis
calculates row kurtosis,
colKurtosis
calculates column kurtosis,
rowCumsums
calculates row cumulated Sums,
colCumsums
calculates column cumulated Sums. }
For SPLUS Compatibility:
stdev
Returns the standard deviation of a vector or matrix. }stdev(x, na.rm = FALSE)skewness(x, ...)
## S3 method for class 'default':
skewness(x, na.rm = FALSE, method = c("moment", "fisher"), ...)
## S3 method for class 'data.frame':
skewness(x, \dots)
## S3 method for class 'POSIXct':
skewness(x, \dots)
## S3 method for class 'POSIXlt':
skewness(x, \dots)
kurtosis(x, ...)
## S3 method for class 'default':
kurtosis(x, na.rm = FALSE, method = c("excess", "moment", "fisher"), ...)
## S3 method for class 'data.frame':
kurtosis(x, \dots)
## S3 method for class 'POSIXct':
kurtosis(x, \dots)
## S3 method for class 'POSIXlt':
kurtosis(x, \dots)
basicStats(x, ci = 0.95)
rowStats(x, FUN, na.rm = FALSE, ...)
rowAvgs(x, na.rm = FALSE, ...)
rowVars(x, na.rm = FALSE, ...)
rowStdevs(x, na.rm = FALSE, ...)
rowSkewness(x, na.rm = FALSE, ...)
rowKurtosis(x, na.rm = FALSE, ...)
rowCumsums(x, na.rm = FALSE, ...)
colStats(x, FUN, na.rm = FALSE, ...)
colAvgs(x, na.rm = FALSE, ...)
colVars(x, na.rm = FALSE, ...)
colStdevs(x, na.rm = FALSE, ...)
colSkewness(x, na.rm = FALSE, ...)
colKurtosis(x, na.rm = FALSE, ...)
colCumsums(x, na.rm = FALSE, ...)
"moment"
or "fisher"
, kurtosis
allows in addition for "excess"
. If "excess"
is
skewness
kurtosis
return the value of the statistics, a numeric value. An
attribute which reports the used method is added.
basicsStats
returns data frame with the following entries and row names:
nobs, NAs, Minimum, Maximum , 1. Quartile, 3. Quartile,
Mean, Median, Sum, SE Mean, LCL Mean, UCL Mean, Variance,
Stdev, Skewness, Kurtosis.
rowStats
rowAvgs
rowVars
rowStdevs
rowSkewness
rowKurtosis
rowCumsum
compute sample statistics by column. Missing values can be
handled.
colStats
colAvgs
colVars
colStdevs
,
colSkewness
colKurtosis
colCumsum
compute sample statistics by column. Missing values can be
handled.## SOURCE("fBasics.3A-BasicStatistics")
## basicStats -
# Simulated Monthly Return Data:
tS = timeSeries(matrix(rnorm(12)), timeCalendar())
# ... must be univariate:
basicStats(tS)
## mean -
## var -
## skewness -
## kurtosis -
# Mean, Variance:
mean(tS)
var(tS)
# Skewness, Kurtosis:
class(tS)
skewness(tS)
kurtosis(tS)
Run the code above in your browser using DataLab