tFit
MLE parameter fit for a Student t-distribution,
stableFit
MLE and Quantile Method stable parameter fit,
ghFit
MLE parameter fit for a generalized hyperbolic distribution,
hypFit
MLE parameter fit for a hyperbolic distribution,
nigFit
MLE parameter fit for a normal inverse Gaussian distribution. }tFit(x, df = 4, doplot = TRUE, span = "auto", trace = FALSE, title = NULL,
description = NULL, ...)
stableFit(x, alpha = 1.75, beta = 0, gamma = 1, delta = 0,
type = c("q", "mle"), doplot = TRUE, trace = FALSE, title = NULL,
description = NULL)
ghFit(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = 1, doplot = TRUE,
span = "auto", trace = FALSE, title = NULL, description = NULL, ...)
hypFit(x, alpha = 1, beta = 0, delta = 1, mu = 0, doplot = TRUE,
span = "auto", trace = FALSE, title = NULL, description = NULL, ...)
nigFit(x, alpha = 1, beta = 0, delta = 1, mu = 0, doplot = TRUE,
span = "auto", trace = FALSE, title = NULL, description = NULL, ...)
## S3 method for class 'fDISTFIT':
print(x, \dots)
alpha
, beta
, gamma
,
and delta
:
value of the index parameter alpha
with alpha = (0,2]
;
skewness parameter beta
, in thdf > 2
, maybe non-integer. By default a value of 4 is
assumed.span=seq(min, max,
times =
"mle"
, the maximum log likelihood
approach, or "qm"
, McCulloch's quantile method.tFit
, hypFit
and nigFit
return
a list with the following components:estimate
.
Either estimate
is an approximate local minimum of the
function or steptol
is too small;
4: iteration limit exceeded;
5: maximum step size stepmax
exceeded five consecutive times.
Either the function is unbounded below, becomes asymptotic to a
finite value from above in some direction or stepmax
is too small.nlm
is used to minimize the "negative"
maximum log-likelihood function. nlm
carries out a minimization
using a Newton-type algorithm.
Spline Smoothed Distribution:
Estimates are done using smoothing spline ANOVA models with cubic
spline marginals for numerical variables.## SOURCE("fBasics.2D-DistributionFits")
## Plot:
par(ask = FALSE)
## nigFit -
# Simulate random variates HYP(1.5, 0.3, 0.5, -1.0):
set.seed(1953)
s = rnig(n = 1000, alpha = 1.5, beta = 0.3, delta = 0.5, mu = -1.0)
## nigFit -
# Fit Parameters:
# Note, this may take some time.
# Starting vector (1, 0, 1, mean(s)):
nigFit(s, alpha = 1, beta = 0, delta = 1, mu = mean(s), doplot = TRUE)
Run the code above in your browser using DataLab