Learn R Programming

fChange (version 2.1.0)

autocorrelation: Estimate the autocorrelation function of the series

Description

Obtain the empirical autocorrelation function for the given lags of a functional time series, X. Given a functional time series, the sample autocovariance functions \(\hat{C}_{h}(u,v)\) are given by: $$\hat{C}_{h}(u,v) = \frac{1}{N} \sum_{i=1}^{N-|h|}(X_{i}(u) - \overline{X}_{N}(u))(X_{i+|h|}(v) - \overline{X}_{N}(v))$$ where \( \overline{X}_{N}(u) = \frac{1}{N} \sum_{i = 1}^{N} X_{i}(t)\) denotes the sample mean function and \(h\) is the lag parameter. The autocorrelation functions are defined over the range \((0,1)\) by normalizing these functions using the factor \(\int\hat{C}_{0}(u,u)du\).

Usage

autocorrelation(X, lags)

Value

Return a list or data.frame with the lagged autocorrelation function(s) estimated from the data. Each function is given by a \((r \) x \( r)\)

matrix, where \(r\) is the number of points observed in each curve.

Arguments

X

A dfts object or data which can be automatically converted to that format. See dfts().

lags

Numeric(s) for the lags to estimate the lagged operator.

See Also

autocovariance()

Examples

Run this code
N <- 100
v <- seq(from = 0, to = 1, length.out = 10)
bbridge <- generate_brownian_bridge(N = N, v = v)
lagged_autocor <- autocorrelation(X = bbridge, lags = 0:1)

Run the code above in your browser using DataLab