autocovariance: Estimate the autocovariance function of the series
Description
Obtain the empirical autocovariance function for the given lags of a
functional time series, X. Given a functional time series, the sample
autocovariance functions \(\hat{C}_{h}(u,v)\) are given by:
$$\hat{C}_{h}(u,v) = \frac{1}{N} \sum_{i=1}^{N-|h|}(Y_{i}(u) -
\overline{X}_{N}(u))(Y_{i+|h|}(v) - \overline{X}_{N}(v))$$
where \( \overline{X}_{N}(u) = \frac{1}{N} \sum_{i = 1}^{N} X_{i}(t)\)
denotes the sample mean function and \(h\) is the lag parameter.
Usage
autocovariance(X, lags = 0:1, center = TRUE)
Value
Return a list or data.frame with the lagged autocovariance function(s)
estimated from the data. Each function is given by a \((r \) x \( r)\)
matrix, where \(r\) is the number of points observed in each curve.
Arguments
X
A dfts object or data which can be automatically converted to that
format. See dfts().
lags
Numeric(s) for the lags to estimate the lagged operator.
center
Boolean if the data should be centered. Default is true.