Learn R Programming

fCopulae (version 4022.85)

ExtremeValueDependency: Bivariate Extreme Value Copulae

Description

A collection and description of functions to investigate bivariate extreme value copulae.

Extreme Value Copulae Functions:

evTauComputes Kendall's tau for extreme value copulae,
evRhocomputes Spearman's rho for extreme value copulae,
evTailCoeffcomputes tail dependence for extreme value copulae,
evTailCoeffSliderplots tail dependence for extreme value copulae.

Usage

evTau(param = NULL, type = evList(), alternative = FALSE)
evRho(param = NULL, type = evList(), alternative = FALSE)
    
evTailCoeff(param = NULL, type = evList())
evTailCoeffSlider(B = 10)

Value

The function pcopula returns a numeric matrix of probabilities computed at grid positions x|y.


The function parchmCopula returns a numeric matrix with values computed for the Archemedean copula.


The function darchmCopula returns a numeric matrix with values computed for thedensity of the Archemedean copula.


The functions Phi* return a numeric vector with the values computed from the Archemedean generator, its derivatives, or its inverse.


The functions cK and cKInv return a numeric vector with the values of the density and inverse for Archimedian copulae.

Arguments

alternative

[evRho][evTau][*evCopula] -
Should the probability be computed alternatively in a direct way from the probability formula or by default via the dependency function?

B

[*Slider] -
the maximum slider menu value when the boundary value is infinite. By default this is set to 10.

param

[*ev*][A*] -
distribution and copulae parameters. A numeric value or vector of named parameters as required by the copula specified by the variable type. If set to NULL, then the default parameters will be taken.

type

[*ev*][Afunc] -
the type of the extreme value copula. A character string selected from: "gumbel", "galambos", "husler.reiss", "tawn", or "bb5".
[evSlider] -
a character string specifying the plot type. Either a perspective plot which is the default or a contour plot with an underlying image plot will be created.

Author

Diethelm Wuertz for the Rmetrics R-port.

Examples

Run this code
## fCOPULA -
   getClass("fCOPULA")
   getSlots("fCOPULA")
   
## revCopula -
   # Not yet implemented
   # revCopula(n = 10, type = "galambos")
   
## pevCopula -
   pevCopula(u = grid2d(), type = "galambos", output = "list")
   
## devCopula -
   devCopula(u = grid2d(), type = "galambos", output = "list")
   
## AfuncSlider -
   # Generator, try:
   if (FALSE) AfuncSlider()

Run the code above in your browser using DataLab