## SOURCE("fExtremes.54A-ExtremesGlm")
## Simulated GEV Data:
xmpExtremes("Start: Simulte GEV Sample >")
x = gevSim(model = list(shape = 0.25, location = 0, scale = 1), n = 1000)
par(mfrow = c(2, 2))
plot(x, main = "Simulated GEV Data")
# Fit GEV Data:
fit = gevglmFit(x)
print(fit)
# Summarize Results:
summary(fit, which = c(TRUE, TRUE, TRUE, FALSE))
## Simulated GEV Data:
xmpExtremes("Next: Estimate Parameters >")
##> x = gevSim(model = list(shape = 0, location = 0, scale = 1), n = 1000)
##> par(mfrow = c(2, 2))
##> plot(x, main = "Simulated Gumbel Data")
# Fit GEV Data:
##> fit = gevglmFit(x, gumbel = TRUE)
##> print(fit)
# Summarize Results:
##> summary(fit, which = c(TRUE, TRUE, TRUE, FALSE))
## Portpirie Data:
xmpExtremes("Next: Fit Portpirie Data >")
par(mfrow = c(2, 1))
data(portpirie)
fit = gevglmFit(portpirie[, 2])
gevglmprofPlot(fit, m = 10, 4.1, 5)
title(main = "Portpirie")
gevglmprofxiPlot(fit, -0.3, 0.3)
title(main = "Portpirie")
## Interactive Plot:
##> par(mfrow = c(2, 2))
##> plot(fit)
Run the code above in your browser using DataLab