Learn R Programming

fExtremes

Rmetrics - Modelling Extreme Events in Finance

The fExtremes package provides functions for analysing and modelling extreme events in financial time Series. The topics include: (i) data pre-processing, (ii) explorative data analysis, (iii) peak over threshold modelling, (iv) block maxima modelling, (v) estimation of VaR and CVaR, and (vi) the computation of the extreme index. It is part of the Rmetrics software project.

An example

The following code simulates data from a GEV distribution and fits a GEV distribution to these data.

library(fExtremes)
# Simulate GEV Data, use default length n=1000
x <- gevSim(model = list(xi = 0.25, mu = 0 , beta = 1), n = 1000)

# Fit GEV data using maximum likelihood estimation
fit <- gevFit(x, type = "mle") 
fit
#> 
#> Title:
#>  GEV Parameter Estimation 
#> 
#> Call:
#>  gevFit(x = x, type = "mle")
#> 
#> Estimation Type:
#>   gev mle 
#> 
#> Estimated Parameters:
#>         xi         mu       beta 
#> 0.18304217 0.04548892 0.99014748 
#> 
#> Description
#>   Thu Dec 21 12:54:05 2023

Installation

To get the current released version from CRAN:

install.packages("fExtremes")

Copy Link

Version

Install

install.packages('fExtremes')

Monthly Downloads

1,054

Version

4032.84

License

GPL (>= 2)

Maintainer

Paul Northrop

Last Published

December 21st, 2023

Functions in fExtremes (4032.84)

ExtremeIndex

Extremal Index Estimation
DataPreprocessing

Extremes Data Preprocessing
fExtremes-package

Modelling Extreme Events in Finance
GpdModelling

GPD Distributions for Extreme Value Theory
GevMdaEstimation

Generalized Extreme Value Modelling
GevDistribution

Generalized Extreme Value Distribution
GpdDistribution

Generalized Pareto Distribution
GevRisk

Generalized Extreme Value Modelling
GevModelling

Generalized Extreme Value Modelling
ExtremesData

Explorative Data Analysis
TimeSeriesData

Time Series Data Sets
ValueAtRisk

Value-at-Risk
fExtremes-internal

Internal fExtremes functions
gpdRisk

GPD Distributions for Extreme Value Theory