garchFit(formula, data, init.rec = c("mci", "uev"), delta = 2, skew = 1,
shape = 4, cond.dist = c("dnorm", "dsnorm", "dged", "dsged", "dstd", "dsstd"),
include.mean = TRUE, include.delta = NULL, include.skew = NULL,
include.shape = NULL, leverage = NULL, trace = TRUE,
algorithm = c("nlminb", "sqp", "lbfgsb", "nlminb+nm", "lbfgsb+nm"),
control = list(), title = NULL, description = NULL, ...)
garchKappa(cond.dist = c("dnorm", "dged", "dstd", "dsnorm", "dsged", "dsstd"),
gamma = 0, delta = 2, skew = NA, shape = NA)
"sqp"
,
"nlminb"
, and "bfgs"
where the first is the default
setting."dnorm"
, "dged"
, "dstd"
,
"dsnorm"
, "dsged"
, "dsstd"
. The default value
nlminb
, and 'bfgs' and 'Nelder-Mead' from optim
.data
, the variables are taken
from environment(formula)
, typically the environment from which
arma
delta
of the variance recursion. By default,
this value will be fixed, otherwise the exponent will be estimated
together with the other model parameters if include.delta=FALSE
.formula=~garch(1,1)
. To specify for example an
ARMA(2,1)-APARCH(1,1) use f
include.mean=TRUE
this will be the case, otherwise
the parameter will be kept fixed durcing the process
of parameter optimization.include.skew=TRUE
and/or include.shape=TRUE
this will
be the case, otherwise theleverage=TRUE
.trace=TRUE
.garchFit
returns a S4 object of class fGARCH
with the following slots:garch
function.x
, containing the data of
the time series to be estimated, the same as given by the
input argument series
.Byrd R.H., Lu P., Nocedal J., Zhu C. (1995); A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal of Scientific Computing 16, 1190--1208. Engle R.F. (1982); Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica 50, 987--1008.
Nash J.C. (1990); Compact Numerical Methods for Computers, Linear Algebra and Function Minimisation, Adam Hilger.
Nelder J.A., Mead R. (1965); A Simplex Algorithm for Function Minimization, Computer Journal 7, 308--313.
Nocedal J., Wright S.J. (1999); Numerical Optimization, Springer, New York.
## garchSpec -
spec = garchSpec()
spec
## garchSim -
x = garchSim(model = spec@model, n = 500)
head(x)
## garchFit -
# fit = garchFit(~garch(1, 1), data = x)
# print(fit)
## Interactive Plot:
## plot(fit)
## Batch Plot:
# plot(fit, which = 3)
# summary(fit)
Run the code above in your browser using DataLab