Learn R Programming

fGarch (version 3042.83.1)

summary-methods: GARCH Summary Methods

Description

Summary methods for GARCH Modelling.

Arguments

Methods

object = "ANY"

Generic function

object = "fGARCH"

Summary function for objects of class "fGARCH".

How to read a diagnostic summary report?

The first five sections return the title, the call, the mean and variance formula, the conditional distribution and the type of standard errors:

 
        Title:
         GARCH Modelling

Call: garchFit(~ garch(1, 1), data = garchSim(), trace = FALSE)

Mean and Variance Equation: ~arch(0)

Conditional Distribution: norm

Std. Errors: based on Hessian

The next three sections return the estimated coefficients, and an error analysis including standard errors, t values, and probabilities, as well as the log Likelihood values from optimization:

        Coefficient(s):
                  mu         omega        alpha1         beta1  
        -5.79788e-05   7.93017e-06   1.59456e-01   2.30772e-01

Error Analysis: Estimate Std. Error t value Pr(>|t|) mu -5.798e-05 2.582e-04 -0.225 0.822 omega 7.930e-06 5.309e-06 1.494 0.135 alpha1 1.595e-01 1.026e-01 1.554 0.120 beta1 2.308e-01 4.203e-01 0.549 0.583

Log Likelihood: -843.3991 normalized: -Inf

The next section provides results on standardized residuals tests, including statistic and p values, and on information criterion statistic including AIC, BIC, SIC, and HQIC:

 
        Standardized Residuals Tests:
                                        Statistic p-Value    
         Jarque-Bera Test   R    Chi^2  0.4172129 0.8117146  
         Shapiro-Wilk Test  R    W      0.9957817 0.8566985  
         Ljung-Box Test     R    Q(10)  13.05581  0.2205680  
         Ljung-Box Test     R    Q(15)  14.40879  0.4947788  
         Ljung-Box Test     R    Q(20)  38.15456  0.008478302
         Ljung-Box Test     R^2  Q(10)  7.619134  0.6659837  
         Ljung-Box Test     R^2  Q(15)  13.89721  0.5333388  
         Ljung-Box Test     R^2  Q(20)  15.61716  0.7400728  
         LM Arch Test       R    TR^2   7.049963  0.8542942

Information Criterion Statistics: AIC BIC SIC HQIC 8.473991 8.539957 8.473212 8.500687

Examples

Run this code
# NOT RUN {
## garchSim -
   x = garchSim(n = 200)

## garchFit - 
   fit = garchFit(formula = x ~ garch(1, 1), data = x, trace = FALSE)
   summary(fit)
# }

Run the code above in your browser using DataLab