tentSim Simulates data from the Tent Map,
henonSim simulates data from the Henon Map,
ikedaSim simulates data from the Ikeda Map,
logisticSim simulates data from the Logistic Map,
lorentzSim simulates data from the Lorentz Map,
roesslerSim simulates data from the Roessler Map. }tentSim(n = 1000, n.skip = 100, parms = c(a = 2), start = runif(1),
doplot = FALSE)
henonSim(n = 1000, n.skip = 100, parms = c(a = 1.4, b = 0.3),
start = runif(2), doplot = FALSE)
ikedaSim(n = 1000, n.skip = 100, parms = c(a = 0.4, b = 6.0, c = 0.9),
start = runif(2), doplot = FALSE)
logisticSim(n = 1000, n.skip = 100, parms = c(r = 4), start = runif(1),
doplot = FALSE)
lorentzSim(times = seq(0, 40, by = 0.01), parms = c(sigma = 16, r = 45.92,
b = 4), start = c(-14, -13, 47), doplot = TRUE, ...)
roesslerSim(times = seq(0, 100, by = 0.01), parms = c(a = 0.2, b = 0.2, c = 8.0),
start = c(-1.894, -9.920, 0.0250), doplot = TRUE, ...)Eckmann J.P., Oliffson Kamphorst S., Ruelle D. (1987), Recurrence plots of dynamical systems, Europhys. Letters 4, 973. Hegger R., Kantz H., Schreiber T. (1999); Practical implementation of nonlinear time series methods: The TISEAN package, CHAOS 9, 413--435.
Kennel M.B., Brown R., Abarbanel H.D.I. (1992); Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A45, 3403. Rosenstein M.T., Collins J.J., De Luca C.J. (1993); A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65, 117.
RandomInnovations.## logisticSim -
set.seed(4711)
x = logisticSim(n = 100)
plot(x, main = "Logistic Map")Run the code above in your browser using DataLab