A collection and description of functions to
simulate different types of chaotic time series
maps.
Chaotic Time Series Maps:
tentSim | Simulates data from the Tent Map, |
henonSim | simulates data from the Henon Map, |
ikedaSim | simulates data from the Ikeda Map, |
logisticSim | simulates data from the Logistic Map, |
lorentzSim | simulates data from the Lorentz Map, |
roesslerSim | simulates data from the Roessler Map. |
tentSim(n = 1000, n.skip = 100, parms = c(a = 2), start = runif(1),
doplot = FALSE)
henonSim(n = 1000, n.skip = 100, parms = c(a = 1.4, b = 0.3),
start = runif(2), doplot = FALSE)
ikedaSim(n = 1000, n.skip = 100, parms = c(a = 0.4, b = 6.0, c = 0.9),
start = runif(2), doplot = FALSE)
logisticSim(n = 1000, n.skip = 100, parms = c(r = 4), start = runif(1),
doplot = FALSE)
lorentzSim(times = seq(0, 40, by = 0.01), parms = c(sigma = 16, r = 45.92,
b = 4), start = c(-14, -13, 47), doplot = TRUE, ...)
roesslerSim(times = seq(0, 100, by = 0.01), parms = c(a = 0.2, b = 0.2, c = 8.0),
start = c(-1.894, -9.920, 0.0250), doplot = TRUE, ...)
[*Sim] -
All functions return invisible a vector of time series data.
a logical flag. Should a plot be displayed?
[henonSim][ikedaSim][logisticSim] -
the number of chaotic time series points to be generated and the
number of initial values to be skipped from the series.
the named parameter vector characterizing the chaotic map.
the vector of start values to initiate the chaotic map.
[lorentzSim][roesslerSim] -
the sequence of time series points at which to generate the map.
arguments to be passed.
Diethelm Wuertz for the Rmetrics R-port.
Brock, W.A., Dechert W.D., Sheinkman J.A. (1987); A Test of Independence Based on the Correlation Dimension, SSRI no. 8702, Department of Economics, University of Wisconsin, Madison.
Eckmann J.P., Oliffson Kamphorst S., Ruelle D. (1987), Recurrence plots of dynamical systems, Europhys. Letters 4, 973.
Hegger R., Kantz H., Schreiber T. (1999); Practical implementation of nonlinear time series methods: The TISEAN package, CHAOS 9, 413--435.
Kennel M.B., Brown R., Abarbanel H.D.I. (1992); Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A45, 3403.
Rosenstein M.T., Collins J.J., De Luca C.J. (1993); A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65, 117.
RandomInnovations
.
## logisticSim -
set.seed(4711)
x = logisticSim(n = 100)
plot(x, main = "Logistic Map")
Run the code above in your browser using DataLab