Usage
dlognorm(x, meanlog = 0, sdlog = 1, deriv = c(0, 1, 2))
plognorm(q, meanlog = 0, sdlog = 1)
dgam(x, alpha, beta)
pgam(q, alpha, beta, lower.tail = TRUE)
drgam(x, alpha, beta, deriv = c(0, 1, 2))
prgam(q, alpha, beta, lower.tail = TRUE)
djohnson(x, a = 0, b = 1, c = 0, d = 1, deriv = c(0, 1, 2))
pjohnson(q, a = 0, b = 1, c = 0, d = 1)mnorm(mean = 0, sd = 1)
mlognorm(meanlog = 0, sdlog = 1)
mrgam(alpha = 1/2, beta = 1)
mjohnson(a, b, c, d)
masian(Time = 1, r = 0.045, sigma = 0.30)
derivative(x, y, deriv = c(1, 2))
dEBM(u, t = 1)
pEBM(u, t = 1)
d2EBM(u, t = 1)
dasymEBM(u, t = 1)
Arguments
a, b, c, d
[*johnson] -
the parameters of the Johnson Type I distribution. The default
values are a=1
, b=1
, c=0
, and d=1
.
alpha, beta
[*gam] -
the parameters of the Gamma distribution.
deriv
an integer value, the degree of differentiation, either 0, 1
or 2.
lower.tail
a logical, if TRUE
, the default, then the probabilities
are P[X <= x]<="" code="">, otherwise, P[X > x]
.=>
mean, sd
[*lognorm] -
the parameters of the Normal distribution, the mean and the
standard deviation respectively. The default values are
mean=0
and sd=1
.
meanlog, sdlog
[*lognorm] -
the parameters of the Log Normal distribution, the mean and
the standard deviation respectively. The default values are
mean=0
and sd=1
.
q
a real numeric value or vector.
Time, r, sigma
the parameters of the Asian Option distribution.
x
a real numeric value or vector.
y
[derivative] -
a real numeric value or vector, the function values from
which to compute the first and second derivative.