Learn R Programming

fabMix (version 5.1)

overfittingMFA_missing_values: Basic MCMC sampler for the case of missing data

Description

Gibbs sampling for fitting a mixture model of factor analyzers.

Usage

overfittingMFA_missing_values(missing_entries, x_data, originalX, outputDirectory, Kmax, 
	m, thinning, burn, g, h, alpha_prior, alpha_sigma, 
	beta_sigma, start_values, q, zStart, gibbs_z, lowerTriangular)

Value

List of files

Arguments

missing_entries

list which contains the row number (1st entry) and column indexes (subsequent entries) for every row containing missing values.

x_data

normalized data

originalX

observed raw data (only for plotting purpose)

outputDirectory

Name of the output folder

Kmax

Number of mixture components

m

Number of iterations

thinning

Thinning of chain

burn

Burn-in period

g

Prior parameter \(g\). Default value: \(g = 2\).

h

Prior parameter \(h\). Default value: \(h = 1\).

alpha_prior

Parameters of the Dirichlet prior distribution of mixture weights.

alpha_sigma

Prior parameter \(\alpha\). Default value: \(\alpha = 2\).

beta_sigma

Prior parameter \(\beta\). Default value: \(\beta = 1\).

start_values

Optional (not used)

q

Number of factors.

zStart

Optional (not used)

gibbs_z

Optional

lowerTriangular

logical value indicating whether a lower triangular parameterization should be imposed on the matrix of factor loadings (if TRUE) or not. Default: TRUE.

Author

Panagiotis Papastamoulis