makeFabiaData
: Rimplementation of makeFabiaData
.makeFabiaData(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_l_noise,mean_l,sd_l)
Here $\lambda_i$ are from $R^n$, $z_i$ from $R^l$, $L$ from $R^{n \times p}$, $Z$ from $R^{p \times l}$, and $X$, $U$, $Y$ from $R^{n \times l}$.
Sequentially $L_i$ are generated using
n
, f2
, of2
, sd_l_noise
, mean_l
,
sd_l
.
of2
gives the minimal observations participating in a
bicluster to which between 0 and $n/f2$ observations are added,
where the number is uniformly chosen. sd_l_noise
gives the
noise of observations not participating in the
bicluster. mean_l
and sd_l
determines the Gaussian from
which the values are drawn for the observations that participate in
the bicluster. The sign of the mean is randomly chosen for each
component.
Sequentially $Z_i$ are generated using
l
, f1
, of1
, sd_z_noise
, mean_z
,
sd_z
.
of1
gives the minimal samples participating in a
bicluster to which between 0 and $l/f1$ samples are added,
where the number is uniformly chosen. sd_z_noise
gives the
noise of samples not participating in the
bicluster. mean_z
and sd_z
determines the Gaussian from
which the values are drawn for the samples that participate in
the bicluster.
$U$ is the overall Gaussian zero mean
noise generated by sd_noise
.
Implementation in R.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#---------------
# TEST
#---------------
dat <- makeFabiaData(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
matrixImagePlot(Y)
dev.new()
matrixImagePlot(X)
#---------------
# DEMO
#---------------
dat <- makeFabiaData(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
matrixImagePlot(Y)
dev.new()
matrixImagePlot(X)
Run the code above in your browser using DataLab