Last chance! 50% off unlimited learning
Sale ends in
Rotation-Sign-Permutation (RSP) algorithm (exact).
rsp_exact(lambda_mcmc, maxIter, threshold, verbose, rotate, printIter)
Post-processed MCMC sample of factor loadings.
The final sign-vectors.
The final permutations.
The resulting average of the post-processed MCMC sample of factor loadings.
A two-column matrix containing the time-to-reach and the value of the objective function for each iteration.
Input matrix containing a MCMC sample of factor loadings. The column names should read as 'LambdaV1_1',..., 'LambdaV1_q', ..., 'LambdaVp_1',..., 'LambdaVp_q', where
Maximum number of iterations of the RSP algorithm. Default: 100.
Positive threshold for declaring convergence. The actual convergence criterion is threshold
m p q with m denoting the number of MCMC iterations. Default: 1e-6.
Logical value indicating whether to print intermediate output or not.
Logical. Default: TRUE.
Print the progress of the algorithm when processing printIter
MCMCdraws, per iteration. Default: 1000.
Panagiotis Papastamoulis
Papastamoulis, P. and Ntzoufras, I. (2020). On the identifiability of Bayesian Factor Analytic models. arXiv:2004.05105 [stat.ME].
# load small mcmc sample of 100 iterations
# with p=6 variables and q=2 factors.
data(small_posterior_2chains)
# post-process it
reorderedPosterior <- rsp_exact(
lambda_mcmc = small_posterior_2chains[[1]])
# summarize the post-processed MCMC sample with coda
summary(reorderedPosterior$lambda_reordered_mcmc)
Run the code above in your browser using DataLab