## Not run:
# set.seed(1)
#
# # simulate data from a (small) factor SV model:
# sim <- fsvsim(series = 5, factors = 2)
#
# # estimate the model (CAVEAT: only few draws!)
# res <- fsvsample(sim$y, factors = 2, draws = 2000,
# burnin = 500, runningstore = 6)
#
# # plot implied volas overtime:
# voltimeplot(res)
#
# # plot correlation matrix at some points in time:
# par(mfrow = c(2,2))
# corimageplot(res, seq(1, nrow(sim$y), length.out = 4),
# fsvsimobj = sim, plotCI = 'circle',
# plotdatedist = -2)
#
#
# # plot (certain) covariances and correlations over time
# par(mfrow = c(2,1))
# covtimeplot(res, 1)
# cortimeplot(res, 1)
#
# # plot (all) correlations over time
# corplot(res, fsvsimobj = sim, these = 1:10)
#
# # plot factor loadings
# par(mfrow = c(1,1))
# facloadpointplot(res, fsvsimobj = sim)
# facloadpairplot(res)
# facloadcredplot(res)
# facloaddensplot(res, fsvsimobj = sim)
#
# # plot latent log variances
# logvartimeplot(res, fsvsimobj = sim, show = "fac")
# logvartimeplot(res, fsvsimobj = sim, show = "idi")
#
# # plot communalities over time
# comtimeplot(res, fsvsimobj = sim, show = 'joint')
# comtimeplot(res, fsvsimobj = sim, show = 'series')
# ## End(Not run)
Run the code above in your browser using DataLab