# \donttest{
set.seed(1)
# simulate data from a (small) factor SV model:
sim <- fsvsim(series = 5, factors = 2)
# estimate the model (CAVEAT: only few draws!)
res <- fsvsample(sim$y, factors = 2, draws = 2000, burnin = 500)
# plot implied volas overtime:
voltimeplot(res)
# plot correlation matrix at some points in time:
par(mfrow = c(2,2))
corimageplot(res, seq(1, nrow(sim$y), length.out = 4),
fsvsimobj = sim, plotCI = 'circle',
plotdatedist = -2)
# plot (certain) covariances and correlations over time
par(mfrow = c(2,1))
covtimeplot(res, 1)
cortimeplot(res, 1)
# plot (all) correlations over time
corplot(res, fsvsimobj = sim, these = 1:10)
# plot factor loadings
par(mfrow = c(1,1))
facloadpointplot(res, fsvsimobj = sim)
facloadpairplot(res)
facloadcredplot(res)
facloaddensplot(res, fsvsimobj = sim)
# plot latent log variances
logvartimeplot(res, fsvsimobj = sim, show = "fac")
logvartimeplot(res, fsvsimobj = sim, show = "idi")
# plot communalities over time
comtimeplot(res, fsvsimobj = sim, show = 'joint')
comtimeplot(res, fsvsimobj = sim, show = 'series')
# }
Run the code above in your browser using DataLab