Learn R Programming

fastadi

fastadi implements the AdaptiveImpute matrix completion algorithm. fastadi is a self-tuning alternative to algorithms such as SoftImpute (implemented in the softImpute package), truncated SVD, maximum margin matrix factorization, and weighted regularized matrix factorization (implemented in the rsparse package). In simulations fastadi often outperforms softImpute by a small margin.

You may find fastadi useful if you are developing embeddings for sparsely observed data, if you are working in natural language processing, or building a recommendation system.

Installation

You can install the released version from CRAN with:

install.packages("fastadi")

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("RoheLab/fastadi")

Example usage

Here we embed users and items in the MovieLens 100K dataset.

library(fastadi)
#> Loading required package: LRMF3
#> Loading required package: Matrix

mf <- adaptive_impute(ml100k, rank = 3L, max_iter = 5L)
#> Warning: 
#> Reached maximum allowed iterations. Returning early.
mf
#> 
#> Adaptively Imputed Low Rank Matrix Factorization
#> ------------------------------------------------
#> 
#> Rank: 3
#> 
#> Rows: 943
#> Cols: 1682
#> 
#> d[rank]: 467.486
#> alpha:   144.663
#> 
#> Components
#> 
#> u: 943 x 3 [matrix] 
#> d: 3      [numeric] 
#> v: 1682 x 3 [matrix]

Note that the vignettes are currently scratch work for reference by the developers and are not yet ready for general consumption.

References

  1. Alex Hayes and Karl Rohe. “Finding Topics in Citation Data”. 2022+

  2. Cho, Juhee, Donggyu Kim, and Karl Rohe. “Asymptotic Theory for Estimating the Singular Vectors and Values of a Partially-Observed Low Rank Matrix with Noise.” Statistica Sinica, 2018. https://doi.org/10.5705/ss.202016.0205.

  3. ———. “Intelligent Initialization and Adaptive Thresholding for Iterative Matrix Completion: Some Statistical and Algorithmic Theory for Adaptive-Impute.” Journal of Computational and Graphical Statistics 28, no. 2 (April 3, 2019): 323–33. https://doi.org/10.1080/10618600.2018.1518238.

  4. Mazumder, Rahul, Trevor Hastie, and Robert Tibshirani. “Spectral Regularization Algorithms for Learning Large Incomplete Matrices.” Journal of Machine Learning Research, 2010. https://web.stanford.edu/~hastie/Papers/mazumder10a.pdf.

You can find the original implementation accompanying these papers here.

Copy Link

Version

Install

install.packages('fastadi')

Monthly Downloads

581

Version

0.1.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Alex Hayes

Last Published

September 7th, 2022

Functions in fastadi (0.1.1)

adaptive_imputation

Create an Adaptive Imputation object
fastadi-package

fastadi: Self-Tuning Data Adaptive Matrix Imputation
adaptive_impute

AdaptiveImpute
masked_approximation_impl

Expand an SVD only at observed values of a sparse matrix
citation_impute

CitationImpute
adaptive_initialize

AdaptiveInitialize