# Loading fastbackward
library(fastbackward)
# Using examples provided in MASS::stepAIC, but with fastbackward instead
## aov with quine dataset
quine.hi <- aov(log(Days + 2.5) ~ .^4, MASS::quine)
quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
quine.stp <- fastbackward(quine.nxt, trace = FALSE)
quine.stp$anova
## lm with cpus dataset
cpus1 <- MASS::cpus
for(v in names(MASS::cpus)[2:7])
cpus1[[v]] <- cut(MASS::cpus[[v]], unique(quantile(MASS::cpus[[v]])),
include.lowest = TRUE)
cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.lm <- lm(log10(perf) ~ ., data = cpus1[cpus.samp,2:8])
cpus.lm2 <- fastbackward(cpus.lm, trace = FALSE)
cpus.lm2$anova
## glm with bwt dataset
example(birthwt, package = "MASS")
birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
birthwt.step <- fastbackward(birthwt.glm, trace = FALSE)
birthwt.step$anova
Run the code above in your browser using DataLab