The Sherman-Morrison formula gives a convenient expression for the inverse of the
rank 1 update \((\bold{A} + \bold{bd}^T)\) where \(\bold{A}\) is a \(n\times n\)
matrix and \(\bold{b}\), \(\bold{d}\) are \(n\)-dimensional vectors. Thus
$$(\bold{A} + \bold{bd}^T)^{-1} = \bold{A}^{-1} - \frac{\bold{A}^{-1}\bold{bd}^T
\bold{A}^{-1}}{1 + \bold{d}^T\bold{A}^{-1}\bold{b}}.$$
Usage
sherman.morrison(a, b, d = b, inverted = FALSE)
Value
a square matrix of the same order as a.
Arguments
a
a numeric matrix.
b
a numeric vector.
d
a numeric vector.
inverted
logical. If TRUE, a is supposed to contain its inverse.
Details
Method of sherman.morrison calls BLAS level 2 subroutines DGEMV and
DGER for computational efficiency.