Applies the whitening transformation to a data matrix based on the Cholesky decomposition
of the empirical covariance matrix.
Usage
whitening(x, Scatter = NULL)
Value
Returns the whitened data matrix \(\bold{Z} = \bold{X W}^T\), where
$$\bold{W}^T\bold{W} = \bold{S}^{-1},$$
with \(\bold{S}\) the empirical covariance matrix.
Arguments
x
vector or matrix of data with, say, \(p\) columns.
Scatter
covariance (or scatter) matrix (\(p \times p\)) of the
distribution, must be positive definite. If NULL, the covariance matrix
is estimated from the data.
References
Kessy, A., Lewin, A., Strimmer, K. (2018).
Optimal whitening and decorrelation.
The American Statistician72, 309-314.