# \donttest{
## Create a binary classification dataset from iris
data(iris)
iris <- iris[iris$Species != "setosa",]
iris$Species <- factor(iris$Species)
## Fit fastml model on binary classification task
model <- fastml(data = iris, label = "Species", algorithms = c("rand_forest", "svm_rbf"))
## 1. Plot all available diagnostics
plot(model, type = "all")
## 2. Bar plot of performance metrics
plot(model, type = "bar")
## 3. ROC curves (only for classification models)
plot(model, type = "roc")
## 4. Calibration plot (requires 'probably' package)
plot(model, type = "calibration")
## 5. ROC curves for specific algorithm(s) only
plot(model, type = "roc", algorithm = "rand_forest")
## 6. Residual diagnostics (only available for regression tasks)
model <- fastml(data = mtcars, label = "mpg", algorithms = c("linear_reg", "xgboost"))
plot(model, type = "residual")
# }
Run the code above in your browser using DataLab