# NOT RUN {
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the corr_plot() function to visualise the relationship between p and q.
# generate p
set.seed(1)
n <- 1000
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))
# generate q
mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)
mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1)
q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))
corr_plot(p, q)
# }
Run the code above in your browser using DataLab