# NOT RUN {
# this is a long running example
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the flexible_cfdr() function to generate v-values and then the pv_plot() function
# to visualise the results.
# generate p
set.seed(1)
n <- 1000
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))
# generate q
mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)
mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1)
q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))
n_indep <- n
res <- flexible_cfdr(p, q, indep_index = 1:n_indep)
pv_plot(p = res[[1]]$p, q = res[[1]]$q, v = res[[1]]$v)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab