Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (2.1.0) of this package.
Take me there.
fda.usc (version 0.9.5)
Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
Description
This package implements functional data methods.
Copy Link
Link to current version
Version
Version
2.1.0
2.0.2
2.0.1
2.0.0
1.5.0
1.4.0
1.2.3
1.2.2
1.2.1
1.2.0
1.1.0
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1
1.0.0
0.9.8.1
0.9.7
0.9.6
0.9.5
0.9.4
0.8
Install
install.packages('fda.usc')
Monthly Downloads
5,150
Version
0.9.5
License
GPL-2
Maintainer
Oviedo la Fuente
Last Published
April 27th, 2011
Functions in fda.usc (0.9.5)
Search all functions
fregre.np.cv
Cross-validation functional regression with scalar response using kernel estimation.
Depth
Provides the depth measure for functional data
int.simpson
Simpson integration
CV.S
The cross-validation (CV) score
Descriptive
Descriptive measures for functional data.
S.basis
Smoothing matrix with roughness penalties by basis representation.
fda.usc.internal
fda.usc internal functions
anova.hetero
ANOVA for heteroscedastic data
fregre.pc.cv
Functional Regression using selection of number of principal components
fdata.bootstrap
Bootstrap samples of a functional statistic
h.default
Calculation of the smoothing parameter (h) for a functional data
FDR
False Discorvery Rate (FDR)
metric.lp
Aproximates Lp-metric distances for functional data.
fregre.basis.cv
Cross-validation Functional Regression with scalar response using basis representation.
fdata2fd
Converts fdata class object into fd class object
inprod.fdata
Inner products of Functional Data Objects o class (fdata)
min.basis
Select the number of basis using GCV method.
depth.RPD
Provides the depth measure by random projections using derivatives
summary.fregre.fd
Summarizes information from fregre.fd objects.
plot.fdata
Plot functional data: fdata.
fdata.deriv
Computes the derivative of functional data object.
fregre.pls.cv
Functional PLS regression with scalar response using selection of number of PLS components
depth.mode
Provides the depth measure (mode) for functional data
fregre.np
Functional regression with scalar response using non-parametric kernel estimation
Outliers.fdata
Detecting outliers for functional dataset
fregre.basis
Functional Regression with scalar response using basis representation.
anova.RPm
Functional ANOVA with Random Project.
Kernel
Symmetric Smoothing Kernels.
classif.knn.fd
k-Nearest Neighbor Classifier from Functional Data
cond.quantile
Conditional quantile
fregre.glm
Fitting Functional Generalized Linear Models
create.fdata.basis
Create Basis Set for Functional Data of fdata class
phoneme
phoneme data
influnce.fdata
Functional influence measures
semimetric.NPFDA
Proximities between functional data (semi-metrics)
fdata
Converts raw data or other functional data classes into fdata class.
predict.fregre.lm
Predict method for functional linear model of fregre.lm fits object
classif.kernel.fb
Kernel classifier from Functional Data Training by basis representation
fregre.plm
Semi-functional linear regression with scalar response.
influence.quan
Quantile for influence measures
cond.F
Conditional Distribution Function
Kernel.asymmetric
Asymmetric Smoothing Kernel
summary.classif.fd
Summarizes information from kernel classification methods.
kmeans.fd
K-Means Clustering for functional data
semimetric.basis
Proximities between functional data
predict.fregre.glm
Predict method for functional linear model of fregre.glm fits object
fregre.pls
Functional PLS regression with scalar response
predict.fregre.fd
Predict method for functional linear model (fregre.fd class)
fregre.lm
Fitting Functional Linear Models
pc.cor
Correlation for functional data by Principal Component Analysis
tecator
tecator data
depth.FM
Fraiman-Muniz depth measure
GCV.S
The generalized cross-validation (GCV) score.
classif.kernel.fd
Kernel Classifier from Functional Data
norm.fdata
Aproximates Lp-norm for functional data.
fdata.cen
Functional data centred (subtract the mean of each discretization point)
cond.mode
Conditional mode
pls.fdata
Partial least squares components for functional data.
predict.fregre.plm
Predict method for semi-functional linear regression model.
predict.classif.fd
Predicts from a fitted classif.fd object.
poblenou
poblenou data
fregre.pc
Functional Regression with scalar response using Principal Components Analysis.
Kernel.integrate
Integrate Smoothing Kernels.
pc.fdata
Principal components for functional data
min.np
Smoothing of functional data using nonparametric kernel estimation
S.np
Smoothing matrix by nonparametric methods.
depth.RP
Provides the depth measure using random projections for functional data
Var.y
Sampling Variance estimates
aemet
aemet data
fda.usc-package
Functional Data Analysis and Utilities for Statistical Computing (fda.usc)