Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc (version 0.9.5)

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)

Description

This package implements functional data methods.

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

5,150

Version

0.9.5

License

GPL-2

Maintainer

Oviedo la Fuente

Last Published

April 27th, 2011

Functions in fda.usc (0.9.5)

fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
Depth

Provides the depth measure for functional data
int.simpson

Simpson integration
CV.S

The cross-validation (CV) score
Descriptive

Descriptive measures for functional data.
S.basis

Smoothing matrix with roughness penalties by basis representation.
fda.usc.internal

fda.usc internal functions
anova.hetero

ANOVA for heteroscedastic data
fregre.pc.cv

Functional Regression using selection of number of principal components
fdata.bootstrap

Bootstrap samples of a functional statistic
h.default

Calculation of the smoothing parameter (h) for a functional data
FDR

False Discorvery Rate (FDR)
metric.lp

Aproximates Lp-metric distances for functional data.
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
fdata2fd

Converts fdata class object into fd class object
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
min.basis

Select the number of basis using GCV method.
depth.RPD

Provides the depth measure by random projections using derivatives
summary.fregre.fd

Summarizes information from fregre.fd objects.
plot.fdata

Plot functional data: fdata.
fdata.deriv

Computes the derivative of functional data object.
fregre.pls.cv

Functional PLS regression with scalar response using selection of number of PLS components
depth.mode

Provides the depth measure (mode) for functional data
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
Outliers.fdata

Detecting outliers for functional dataset
fregre.basis

Functional Regression with scalar response using basis representation.
anova.RPm

Functional ANOVA with Random Project.
Kernel

Symmetric Smoothing Kernels.
classif.knn.fd

k-Nearest Neighbor Classifier from Functional Data
cond.quantile

Conditional quantile
fregre.glm

Fitting Functional Generalized Linear Models
create.fdata.basis

Create Basis Set for Functional Data of fdata class
phoneme

phoneme data
influnce.fdata

Functional influence measures
semimetric.NPFDA

Proximities between functional data (semi-metrics)
fdata

Converts raw data or other functional data classes into fdata class.
predict.fregre.lm

Predict method for functional linear model of fregre.lm fits object
classif.kernel.fb

Kernel classifier from Functional Data Training by basis representation
fregre.plm

Semi-functional linear regression with scalar response.
influence.quan

Quantile for influence measures
cond.F

Conditional Distribution Function
Kernel.asymmetric

Asymmetric Smoothing Kernel
summary.classif.fd

Summarizes information from kernel classification methods.
kmeans.fd

K-Means Clustering for functional data
semimetric.basis

Proximities between functional data
predict.fregre.glm

Predict method for functional linear model of fregre.glm fits object
fregre.pls

Functional PLS regression with scalar response
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
fregre.lm

Fitting Functional Linear Models
pc.cor

Correlation for functional data by Principal Component Analysis
tecator

tecator data
depth.FM

Fraiman-Muniz depth measure
GCV.S

The generalized cross-validation (GCV) score.
classif.kernel.fd

Kernel Classifier from Functional Data
norm.fdata

Aproximates Lp-norm for functional data.
fdata.cen

Functional data centred (subtract the mean of each discretization point)
cond.mode

Conditional mode
pls.fdata

Partial least squares components for functional data.
predict.fregre.plm

Predict method for semi-functional linear regression model.
predict.classif.fd

Predicts from a fitted classif.fd object.
poblenou

poblenou data
fregre.pc

Functional Regression with scalar response using Principal Components Analysis.
Kernel.integrate

Integrate Smoothing Kernels.
pc.fdata

Principal components for functional data
min.np

Smoothing of functional data using nonparametric kernel estimation
S.np

Smoothing matrix by nonparametric methods.
depth.RP

Provides the depth measure using random projections for functional data
Var.y

Sampling Variance estimates
aemet

aemet data
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)