Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc (version 1.0.0)

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)

Description

The R package fda.usc carries out exploratory and descriptive analysis of functional data such as depth measurements or functional atypical curves detection, functions to compute functional regression models with a scalar response, supervised and unsupervised classification methods and functional analysis of variance.

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

5,150

Version

1.0.0

License

GPL-2

Maintainer

Manuel Oviedo de la Fuente

Last Published

October 19th, 2012

Functions in fda.usc (1.0.0)

aemet

aemet data
anova.hetero

ANOVA for heteroscedastic data
flm.Ftest

F-test for the Functional Linear Model with scalar response
fdata2pc

Principal components for functional data
anova.RPm

Functional ANOVA with Random Project.
fda.usc.internal

fda.usc internal functions
fdata.deriv

Computes the derivative of functional data object.
Descriptive

Descriptive measures for functional data.
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
CV.S

The cross-validation (CV) score
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
fregre.lm

Fitting Functional Linear Models
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
fregre.bootstrap

Bootstrap regression
cond.F

Conditional Distribution Function
classif.gsam

Classification Fitting Functional Generalized Additive Models
cond.quantile

Conditional quantile
classif.glm

Classification Fitting Functional Generalized Linear Models
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
FDR

False Discorvery Rate (FDR)
influence.quan

Quantile for influence measures
fregre.pc.cv

Vaidation criteria for Functional Principal Component (and Ridge) Regression using selection of number of Principal Components
fregre.pls.cv

Functional PLS regression with scalar response using selection of number of PLS components
dev.S

The deviance score .
Kernel.integrate

Integrate Smoothing Kernels.
fdata.bootstrap

Bootstrap samples of a functional statistic
fregre.pc

Functional (Ridge) Regression with scalar response using Principal Components Analysis.
fregre.pls

Functional PLS regression with scalar response
classif.np

Kernel Classifier from Functional Data
Outliers.fdata

Detecting outliers for functional dataset
cond.mode

Conditional mode
depth.mode

Provides the depth measure (mode) for functional data
S.np

Smoothing matrix by nonparametric methods.
Depth

Provides the depth measure for functional data
Var.y

Sampling Variance estimates
predict.fregre.lm

Predict method for functional linear model of fregre.lm fits object
create.fdata.basis

Create Basis Set for Functional Data of fdata class
min.np

Smoothing of functional data using nonparametric kernel estimation
influnce.fdata

Functional influence measures
predict.fregre.glm

Predict method for functional linear model of fregre.glm fits object
semimetric.NPFDA

Proximities between functional data (semi-metrics)
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
Kernel.asymmetric

Asymmetric Smoothing Kernel
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
rproc2fdata

Generate random process of fdata class.
min.basis

Select the number of basis using GCV method.
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
semimetric.basis

Proximities between functional data
kmeans.fd

K-Means Clustering for functional data
poblenou

poblenou data
predict.fregre.gsam

Predict method for functional generalized spectral additive model of fregre.gsam fits object
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
depth.RP

Provides the depth measure using random projections for functional data
fdata2fd

Converts fdata class object into fd class object
fregre.plm

Semi-functional partially linear model with scalar response.
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
GCV.S

The generalized cross-validation (GCV) score.
dis.cos.cor

Proximities between functional data
summary.classif

Summarizes information from kernel classification methods.
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
int.simpson

Simpson integration
metric.dist

Distance Matrix Computation
h.default

Calculation of the smoothing parameter (h) for a functional data
fdata.methods

fdata S3 Group Generic Functions
Kernel

Symmetric Smoothing Kernels.
phoneme

phoneme data
metric.lp

Aproximates Lp-metric distances for functional data.
fregre.glm

Fitting Functional Generalized Linear Models
fdata2pls

Partial least squares components for functional data.
depth.RPD

Provides the depth measure by random projections using derivatives
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
fdata

Converts raw data or other functional data classes into fdata class.
fdata.cen

Functional data centred (subtract the mean of each discretization point)
rber.gold

Gold section bootstrap sampling
predict.classif

Predicts from a fitted classif object.
predict.fregre.gkam

Predict method for functional generalized kernel additive model of fregre.gkam fits object
plot.fdata

Plot functional data: fdata.
norm.fdata

Aproximates Lp-norm for functional data.
S.basis

Smoothing matrix with roughness penalties by basis representation.
summary.fregre.fd

Summarizes information from fregre.fd objects.
summary.fregre.gkam

Summarizes information from fregre.gkam objects.
depth.FM

Fraiman-Muniz depth measure
fregre.basis

Functional Regression with scalar response using basis representation.
predict.fregre.plm

Predict method for semi-functional linear regression model.
tecator

tecator data