Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc (version 1.5.0)

Functional Data Analysis and Utilities for Statistical Computing

Description

Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

2,504

Version

1.5.0

License

GPL-2

Maintainer

Manuel Oviedo de la Fuente

Last Published

February 1st, 2019

Functions in fda.usc (1.5.0)

MCO

Mithochondiral calcium overload (MCO) data set
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
classif.glm

Classification Fitting Functional Generalized Linear Models
classif.gsam

Classification Fitting Functional Generalized Additive Models
fda.usc.internal

fda.usc internal functions
fdata.cen

Functional data centred (subtract the mean of each discretization point)
fdata.deriv

Computes the derivative of functional data object.
fdata.methods

fdata S3 Group Generic Functions
fregre.basis

Functional Regression with scalar response using basis representation.
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
fdata2fd

Converts fdata class object into fd class object
fregre.lm

Fitting Functional Linear Models
gridfdata, rcombfdata

Utils for generate functional data
Depth for multivariate fdata

Provides the depth measure for a list of p--functional data objects
h.default

Calculation of the smoothing parameter (h) for a functional data
Depth for a multivariate dataset

Provides the depth measure for multivariate data
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
Var.y

Sampling Variance estimates
Descriptive

Descriptive measures for functional data.
metric.lp

Approximates Lp-metric distances for functional data.
FDR

False Discorvery Rate (FDR)
classif.np

Kernel Classifier from Functional Data
metric.hausdorff

Compute the Hausdorff distances between two curves.
classif.tree

Classification Fitting Functional Recursive Partitioning and Regression Trees
cond.quantile

Conditional quantile
classif.depth

Classifier from Functional Data
aemet

aemet data
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
create.fdata.basis

Create Basis Set for Functional Data of fdata class
dcor.xy

Distance Correlation Statistic and t-Test
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
fregre.glm

Fitting Functional Generalized Linear Models
fregre.pc.cv

Functional penalized PC regression with scalar response using selection of number of PC components
fregre.plm

Semi-functional partially linear model with scalar response.
dev.S

The deviance score .
metric.kl

Kullback--Leibler distance
predict.fregre.GAM

Predict method for functional regression model
fdata2pc

Principal components for functional data
r.ou

Ornstein-Uhlenbeck process
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
min.np

Smoothing of functional data using nonparametric kernel estimation
min.basis

Select the number of basis using GCV method.
rwild

Wild bootstrap residuals
na.omit.fdata

A wrapper for the na.omit and na.fail function for fdata object
summary.fregre.fd

Summarizes information from fregre.fd objects.
semimetric.NPFDA

Proximities between functional data (semi-metrics)
rdir.pc

Data-driven sampling of random directions guided by sample of functional data
subset.fdata

Subsetting
rp.flm.statistic

Statistic for testing the FLM using random projections
summary.classif

Summarizes information from kernel classification methods.
Kernel.asymmetric

Asymmetric Smoothing Kernel
Kernel

Symmetric Smoothing Kernels.
fdata2pls

Partial least squares components for functional data.
fregre.gsam.vs

Variable Selection using Functional Additive Models
Kernel.integrate

Integrate Smoothing Kernels.
fregre.igls

Fit of Functional Generalized Least Squares Model Iteratively
LMDC.select

Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC)
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
anova.onefactor

One--way anova model for functional data
classif.DD

DD-Classifier Based on DD-plot
fregre.pc

Functional Regression with scalar response using Principal Components Analysis.
influnce.fdata

Functional influence measures
cond.F

Conditional Distribution Function
influence.quan

Quantile for influence measures
cond.mode

Conditional mode
fdata

Converts raw data or other functional data classes into fdata class.
CV.S

The cross-validation (CV) score
phoneme

phoneme data
plot.fdata

Plot functional data: fdata.
Depth for univariate fdata

Computation of depth measures for functional data
fdata.bootstrap

Bootstrap samples of a functional statistic
S.basis

Smoothing matrix with roughness penalties by basis representation.
S.np

Smoothing matrix by nonparametric methods.
fregre.gls

Fit Functional Linear Model Using Generalized Least Squares
anova.RPm

Functional ANOVA with Random Project.
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
rp.flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response using random projections
fregre.pls

Functional Penalized PLS regression with scalar response
fregre.pls.cv

Functional penalized PLS regression with scalar response using selection of number of PLS components
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
anova.hetero

ANOVA for heteroscedastic data
int.simpson

Simpson integration
rproc2fdata

Simulate several random processes.
norm.fdata

Approximates Lp-norm for functional data.
order.fdata

dis.cos.cor

Proximities between functional data
predict.functional.response

Predict method for functional response model
flm.Ftest

F-test for the Functional Linear Model with scalar response
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
summary.fregre.gkam

Summarizes information from fregre.gkam objects.
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
tecator

tecator data
predict.fregre.gls

Predictions from a functional gls object
fregre.basis.fr

Functional Regression with functional response using basis representation.
fregre.bootstrap

Bootstrap regression
fregre.ppc,fregre.ppls

Functional Penalized PC (or PLS) regression with scalar response
fregre.ppc.cv

Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components
kmeans.fd

K-Means Clustering for functional data
metric.dist

Distance Matrix Computation
poblenou

poblenou data
predict.classif.DD

Predicts from a fitted classif.DD object.
predict.classif

Predicts from a fitted classif object.
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
semimetric.basis

Proximities between functional data
Utilities

A wrapper for the split and unlist function for fdata object
GCCV.S

The generalized correlated cross-validation (GCCV) score.
GCV.S

The generalized cross-validation (GCV) score.
Outliers.fdata

Detecting outliers for functional dataset
P.penalty

Penalty matrix for higher order differences