Provides the smoothing matrix S
for the discretization points tt
S.LLR(tt, h, Ker = Ker.norm, w = NULL, cv = FALSE)S.LPR(tt, h, p = 1, Ker = Ker.norm, w = NULL, cv = FALSE)
S.LCR(tt, h, Ker = Ker.norm, w = NULL, cv = FALSE)
S.KNN(tt, h = NULL, Ker = Ker.unif, w = NULL, cv = FALSE)
S.NW(tt, h = NULL, Ker = Ker.norm, w = NULL, cv = FALSE)
Return the smoothing matrix S
.
S.LLR
return the smoothing matrix by Local Linear Smoothing.
S.NW
return the smoothing matrix by Nadaraya-Watson kernel estimator.
S.KNN
return the smoothing matrix by k nearest neighbors estimator.
S.LPR
return the smoothing matrix by Local Polynomial Regression Estimator.
S.LCR
return the smoothing matrix by Cubic Polynomial Regression.
Vector of discretization points or distance matrix mdist
Smoothing parameter or bandwidth. In S.KNN, number of k-nearest neighbors.
Type of kernel used, by default normal kernel.
Optional case weights.
If TRUE
, cross-validation is done.
Polynomial degree. be passed by default to create.basis
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Options:
Nadaraya-Watson kernel estimator (S.NW) with bandwidth parameter h
.
Local Linear Smoothing (S.LLR) with bandwidth parameter h
.
K nearest neighbors estimator (S.KNN) with parameter knn
.
Polynomial Local Regression Estimator (S.LCR) with parameter of polynomial p
and of kernel Ker
.
Local Cubic Regression Estimator (S.LPR) with kernel Ker
.
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.
Opsomer, J. D., and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. The Annals of Statistics, 25(1), 186-211.
See Also as S.basis
if (FALSE) {
tt=1:101
S=S.LLR(tt,h=5)
S2=S.LLR(tt,h=10,Ker=Ker.tri)
S3=S.NW(tt,h=10,Ker=Ker.tri)
S4=S.KNN(tt,h=5,Ker=Ker.tri)
par(mfrow=c(2,3))
image(S)
image(S2)
image(S3)
image(S4)
S5=S.LPR(tt,h=10,p=1, Ker=Ker.tri)
S6=S.LCR(tt,h=10,Ker=Ker.tri)
image(S5)
image(S6)
}
Run the code above in your browser using DataLab