Last chance! 50% off unlimited learning
Sale ends in
Carry out a functional canonical correlation analysis with regularization or roughness penalties on the estimated canonical variables.
cca.fd(fdobj1, fdobj2=fdobj1, ncan = 2,
ccafdPar1=fdPar(basisobj1, 2, 1e-10),
ccafdPar2=ccafdPar1, centerfns=TRUE)
a functional data object.
a functional data object. By default this is fdobj1
, in
which case the first argument must be a bivariate functional data
object.
the number of canonical variables and weight functions to be computed. The default is 2.
a functional parameter object defining the first set of canonical
weight functions. The object may contain specifications for a
roughness penalty. The default is defined using the same basis
as that used for fdobj1
with a slight penalty on its
second derivative.
a functional parameter object defining the second set of canonical
weight functions. The object may contain specifications for a
roughness penalty. The default is ccafdParobj1
.
if TRUE, the functions are centered prior to analysis. This is the default.
an object of class cca.fd
with the 5 slots:
a functional data object for the first canonical variate weight function
a functional data object for the second canonical variate weight function
a vector of canonical correlations
a matrix of scores on the first canonical variable.
a matrix of scores on the second canonical variable.
# NOT RUN {
# Canonical correlation analysis of knee-hip curves
gaittime <- (1:20)/21
gaitrange <- c(0,1)
gaitbasis <- create.fourier.basis(gaitrange,21)
lambda <- 10^(-11.5)
harmaccelLfd <- vec2Lfd(c(0, 0, (2*pi)^2, 0))
gaitfdPar <- fdPar(gaitbasis, harmaccelLfd, lambda)
gaitfd <- smooth.basis(gaittime, gait, gaitfdPar)$fd
ccafdPar <- fdPar(gaitfd, harmaccelLfd, 1e-8)
ccafd0 <- cca.fd(gaitfd[,1], gaitfd[,2], ncan=3, ccafdPar, ccafdPar)
# display the canonical correlations
round(ccafd0$ccacorr[1:6],3)
# compute a VARIMAX rotation of the canonical variables
ccafd <- varmx.cca.fd(ccafd0)
# plot the canonical weight functions
plot.cca.fd(ccafd)
# }
Run the code above in your browser using DataLab