
Last chance! 50% off unlimited learning
Sale ends in
A vector of argument values for the first argument s
of the
functional data object to be evaluated.
eval.bifd(sevalarg, tevalarg, bifd, sLfdobj=0, tLfdobj=0)
a vector of argument values for the first argument s
of the
functional data object to be evaluated.
a vector of argument values for the second argument t
of the
functional data object to be evaluated.
a two-argument functional data object.
either a nonnegative integer or a linear differential operator
object. If present, the derivative or the value of applying the
operator to the object as a function of the first argument s
is evaluated rather than the functions themselves.
either a nonnegative integer or a linear differential operator
object. If present, the derivative or the value of applying the
operator to the object as a function of the second argument t
is evaluated rather than the functions themselves.
an array of 2, 3, or 4 dimensions containing the function values. The first dimension corresponds to the argument values in sevalarg, the second to argument values in tevalarg, the third if present to replications, and the fourth if present to functions.
# NOT RUN {
# every-other-day basis to save test time
daybasis <- create.fourier.basis(c(0,365), 183)
harmLcoef <- c(0,(2*pi/365)^2,0)
harmLfd <- vec2Lfd(harmLcoef, c(0,365))
templambda <- 1.0
tempfdPar <- fdPar(daybasis, harmLfd, lambda=1)
tempfd <- smooth.basis(day.5,
CanadianWeather$dailyAv[,,"Temperature.C"], tempfdPar)$fd
# define the variance-covariance bivariate fd object
tempvarbifd <- var.fd(tempfd)
# evaluate the variance-covariance surface and plot
weektime <- seq(0,365,len=53)
tempvarmat <- eval.bifd(weektime,weektime,tempvarbifd)
# make a perspective plot of the variance function
persp(tempvarmat)
# }
Run the code above in your browser using DataLab