Learn R Programming

fdaMixed (version 0.6.1)

fdaMixed-package: Functional Data Analysis in a Mixed Model Framework

Description

Likelihood based analysis of 1-dimension functional data in a mixed-effets model framework. The methodology is designed for equidistantly sampled high frequency data, where the needed matrix computation may be approximated by semi-explicit operator equivalents with linear computational complexity. Extensions exist for non-equidistantly sampled data, but these have not been implemented.

Arguments

Author

Bo Markussen <bomar@math.ku.dk>

References

Bo Markussen (2013), "Functional data analysis in an operator based mixed model framework", Bernoulli, vol. 19, pp. 1-17.

Conrad Sanderson (2010), "Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments", NICTA technical report.

Dirk Eddelbuettel, "Rcpp: Seamless R and C++ Integration with Rcpp", UseR!, Springer, 2013.

See Also

Implementation done using the package RcppArmadillo. For penalized likelihood analysis of functional data see the packages fda and fda.usc.

Examples

Run this code
x <- seq(0,2*pi,length.out=200)
y.true <- sin(x)+x
y.obs <- y.true + rnorm(200)
est0 <- fdaLm(y.obs~0,Fright="open",right=2*pi)
est1 <- fdaLm(y.obs~0+x,Fright="open",right=2*pi)
plot(x,y.obs,main="Estimating the sum of a line and a curve")
lines(x,y.true,lty=2)
lines(x,est0$xBLUP[,1,1],col=2)
lines(x,est1$betaHat*x+est1$xBLUP[,1,1],col=3)
legend("topleft",c("True curve","Smooth","Line + smooth"),col=1:3,lty=c(2,1,1))

Run the code above in your browser using DataLab