Learn R Programming

fdaoutlier

Outlier Detection Tools for Functional Data Analysis

tools for functional data analysis. Methods implemented include directional outlyingness, MS-plot, total variation depth, and sequential transformations among others.

Installation

You can install the current version of fdaoutliers from CRAN with:

install.packages("fdaoutlier")

or the latest the development version from GitHub with:

devtools::install_github("otsegun/fdaoutlier")

Example

Generate some functional data with magnitude outliers:

library(fdaoutlier)
simdata <- simulation_model1(plot = T, seed = 1)
dim(simdata$data)
#> [1] 100  50

Next apply the msplot of Dai & Genton (2018)

ms <- msplot(simdata$data)
ms$outliers
#> [1]  4  7 17 26 29 55 62 66 76
simdata$true_outliers
#> [1]  4  7 17 55 66

Methods Implemented

  1. MS-Plot (Dai & Genton, 2018)
  2. TVDMSS (Huang & Sun, 2019)
  3. Extremal depth (Narisetty & Nair, 2016)
  4. Extreme rank length depth (Myllymäki et al., 2017; Dai et al., 2020)
  5. Directional quantile (Myllymäki et al., 2017; Dai et al., 2020)
  6. Fast band depth and modified band depth (Sun et al., 2012)
  7. Directional Outlyingness (Dai & Genton, 2019)
  8. Sequential transformation (Dai et al., 2020)

Bugs and Feature Requests

Kindly open an issue using Github issues.

Copy Link

Version

Install

install.packages('fdaoutlier')

Monthly Downloads

227

Version

0.2.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Oluwasegun Taiwo Ojo

Last Published

September 30th, 2023

Functions in fdaoutlier (0.2.1)

directional_quantile

Compute directional quantile outlyingness for a sample of discretely observed curves
linfinity_depth

Compute the L-infinity depth of a sample of curves/functions.
band_depth

Compute the band depth for a sample of curves/observations.
modified_band_depth

Compute the modified band depth for a sample of curves/functions.
msplot

Outlier Detection using Magnitude-Shape Plot (MS-Plot) based on the directional outlyingness for functional data.
extreme_rank_length

Compute the Extreme Rank Length Depth.
extremal_depth

Compute extremal depth for functional data
muod

Massive Unsupervised Outlier Detection (MUOD)
functional_boxplot

Functional Boxplot for a sample of functions.
projection_depth

Random projection for multivariate data
plot_dtt

Plot Data from simulation models
dir_out

Dai & Genton (2019) Directional outlyingness for univariate or multivariate functional data.
simulation_model3

Convenience function for generating functional data
simulation_model5

Convenience function for generating functional data
world_population

World Population Data by Countries
simulation_model6

Convenience function for generating functional data
simulation_model1

Convenience function for generating functional data
total_variation_depth

Total Variation Depth and Modified Shape Similarity Index
simulation_model9

Convenience function for generating functional data
simulation_model4

Convenience function for generating functional data
seq_transform

Find and classify outliers functional outliers using Sequential Transformation
spanish_weather

Spanish Weather Data
simulation_model2

Convenience function for generating functional data
tvd_mss

Outlier detection using the total variation depth and modified shape similarity index.
simulation_model7

Convenience function for generating functional data
simulation_model8

Convenience function for generating functional data
hardin_factor_numeric

Compute F distribution factors for approximating the tail of the distribution of robust MCD distance.