This function identifies a multinomial logistic regression model with phase-variability using elastic pca
elastic.mlpcr.regression(
f,
y,
time,
pca.method = "combined",
no = 5,
smooth_data = FALSE,
sparam = 25
)
matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
vector of size \(M\) labels
vector of size \(N\) describing the sample points
string specifing pca method (options = "combined", "vert", or "horiz", default = "combined")
scalar specifify number of principal components (default=5)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
Returns a mlpcr object containing
model intercept
regressor vector
label vector
Coded labels
fdawarp object of aligned data
pca object of principal components
logistic loss
string specifing pca method used
J. D. Tucker, J. R. Lewis, and A. Srivastava, <U+201C>Elastic Functional Principal Component Regression,<U+201D> Statistical Analysis and Data Mining, 10.1002/sam.11399, 2018.