This function identifies a regression model with phase-variability using elastic pca
elastic.pcr.regression(
f,
y,
time,
pca.method = "combined",
no = 5,
smooth_data = FALSE,
sparam = 25,
parallel = F,
C = NULL
)
matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
vector of size \(M\) responses
vector of size \(N\) describing the sample points
string specifing pca method (options = "combined", "vert", or "horiz", default = "combined")
scalar specifify number of principal components (default=5)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
run in parallel (default = F)
scale balance parameter for combined method (default = NULL)
Returns a pcr object containing
model intercept
regressor vector
response vector
fdawarp object of aligned data
pca object of principal components
sum of squared errors
string specifing pca method used
J. D. Tucker, J. R. Lewis, and A. Srivastava, <U+201C>Elastic Functional Principal Component Regression,<U+201D> Statistical Analysis and Data Mining, 10.1002/sam.11399, 2018.