This function identifies a regression model with phase-variability using elastic methods
elastic.regression(
f,
y,
time,
B = NULL,
lam = 0,
df = 20,
max_itr = 20,
smooth_data = FALSE,
sparam = 25,
parallel = FALSE,
cores = 2
)
matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
vector of size \(M\) responses
vector of size \(N\) describing the sample points
matrix defining basis functions (default = NULL)
scalar regularization parameter (default=0)
scalar controlling degrees of freedom if B=NULL (default=20)
scalar number of iterations (default=20)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
enable parallel mode using foreach
and
doParallel
package
set number of cores to use with doParallel
(default = 2)
Returns a list containing
model intercept
regressor function
aligned functions - matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
aligned srvfs - similar structure to fn
warping functions - similar structure to fn
original srvf - similar structure to fn
basis matrix
basis coefficients
sum of squared errors
model type ('linear')
Tucker, J. D., Wu, W., Srivastava, A., Elastic Functional Logistic Regression with Application to Physiological Signal Classification, Electronic Journal of Statistics (2014), submitted.