This function clusters functions and aligns using the elastic square-root slope (srsf) framework.
kmeans_align(
f,
time,
K,
seeds = NULL,
lambda = 0,
showplot = TRUE,
smooth_data = FALSE,
sparam = 25,
parallel = FALSE,
alignment = TRUE,
omethod = "DP",
MaxItr = 50,
thresh = 0.01
)
matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
vector of size \(N\) describing the sample points
number of clusters
indexes of cluster center functions (default = NULL)
controls the elasticity (default = 0)
shows plots of functions (default = T)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
enable parallel mode using foreach
and
doParallel
package (default=F)
whether to perform alignment (default = T)
optimization method (DP,DP2,RBFGS)
maximum number of iterations
cost function threshold
Returns a fdakma object containing
original functions
aligned functions - matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples which is a list for each cluster
aligned SRSFs - similar structure to fn
original SRSFs
cluster labels
cluster center functions
cluster center SRSFs
warping functions - similar structure to fn
Cost Function Value
Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J. S., May 2011. Registration of functional data using fisher-rao metric, arXiv:1103.3817v2 [math.ST].
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Sangalli, L. M., et al. (2010). "k-mean alignment for curve clustering." Computational Statistics & Data Analysis 54(5): 1219-1233.
# NOT RUN {
data("growth_vel")
out <- kmeans_align(growth_vel$f,growth_vel$time, K=2)
# }
Run the code above in your browser using DataLab