powered by
This function calculates vertical functional principal component analysis on aligned data
vertFPCA(warp_data, no, id = round(length(warp_data$time)/2), showplot = TRUE)
fdawarp object from time_warping of aligned data
number of principal components to extract
point to use for f(0) (default = midpoint)
show plots of principal directions (default = T)
Returns a vfpca object containing
srvf principal directions
f principal directions
latent values
coefficients
eigenvectors
point used for f(0)
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
# NOT RUN { data("simu_warp") vfpca = vertFPCA(simu_warp,no = 3) # }
Run the code above in your browser using DataLab