curve_principal_directions(v, K, mu, len = NA, no = 3, N = 5, mode = "O")
Value
Returns a list containing
s
singular values
U
singular vectors
coef
principal coefficients
pd
principal directions
Arguments
v
array of sizes \(n \times T \times N1\) for \(N1\) shooting
vectors of dimension \(n\) evaluated on a grid of \(T\) points
K
matrix of sizes \(nT \times nT\) of covariance matrix
mu
matrix of sizes \(n \times T\) of mean srvf
len
length of original curves (default = NA)
no
number of components
N
number of samples on each side of mean
mode
Open ("O") or Closed ("C") curves
References
Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.
out <- curve_karcher_mean(beta[, , 1, 1:2], maxit = 2)
# note: use more shapes, small for speedK <- curve_karcher_cov(out$v)
out <- curve_principal_directions(out$v, K, out$mu)