This function identifies a multinomial logistic regression model with phase-variability using elastic pca
elastic.mlpcr.regression(
f,
y,
time,
pca.method = "combined",
no = 5,
smooth_data = FALSE,
sparam = 25
)
Returns a mlpcr object containing
model intercept
regressor vector
label vector
Coded labels
fdawarp object of aligned data
pca object of principal components
logistic loss
string specifying pca method used
matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
vector of size \(M\) labels
vector of size \(N\) describing the sample points
string specifying pca method (options = "combined", "vert", or "horiz", default = "combined")
scalar specify number of principal components (default=5)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic Functional Principal Component Regression,” Statistical Analysis and Data Mining, 10.1002/sam.11399, 2018.