This function identifies a regression model with phase-variability using elastic pca
elastic.pcr.regression(
f,
y,
time,
pca.method = "combined",
no = 5,
smooth_data = FALSE,
sparam = 25,
parallel = F,
C = NULL
)
Returns a pcr object containing
model intercept
regressor vector
response vector
fdawarp object of aligned data
pca object of principal components
sum of squared errors
string specifying pca method used
matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
vector of size \(M\) responses
vector of size \(N\) describing the sample points
string specifying pca method (options = "combined", "vert", or "horiz", default = "combined")
scalar specify number of principal components (default = 5)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
run in parallel (default = F)
scale balance parameter for combined method (default = NULL)
J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic Functional Principal Component Regression,” Statistical Analysis and Data Mining, 10.1002/sam.11399, 2018.