Learn R Programming

fdasrvf (version 2.3.6)

elastic.prediction: Elastic Prediction from Regression Models

Description

This function performs prediction from an elastic regression model with phase-variability

Usage

elastic.prediction(f, time, model, y = NULL, smooth_data = FALSE, sparam = 25)

Value

Returns a list containing

y_pred

predicted values of f or probabilities depending on model

SSE

sum of squared errors if linear

y_labels

labels if logistic model

PC

probability of classification if logistic

Arguments

f

matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples

time

vector of size \(N\) describing the sample points

model

list describing model from elastic regression methods

y

responses of test matrix f (default=NULL)

smooth_data

smooth data using box filter (default = F)

sparam

number of times to apply box filter (default = 25)

References

Tucker, J. D., Wu, W., Srivastava, A., Elastic Functional Logistic Regression with Application to Physiological Signal Classification, Electronic Journal of Statistics (2014), submitted.