
Last chance! 50% off unlimited learning
Sale ends in
This function identifies changepoints using a functional PCA
elastic_change_fpca(
f,
time,
pca.method = "combined",
pc = 0.95,
d = 1000,
n_pcs = 5,
smooth_data = FALSE,
sparam = 25,
showplot = TRUE
)
Returns a list object containing
p value
indice of changepoint
functions before changepoint
functions after changepoint
mean function before changepoint
mean function after changepoint
warping functions before changepoint
warping functions after changepoint
mean warping function before changepoint
mean warping function after changepoint
amplitude change function
test statistic values
matrix (
vector of size
string specifying pca method (options = "combined", "vert", or "horiz", default = "combined")
percentage of cummulation explained variance (default = 0.95)
number of monte carlo iterations of Brownian Bridge (default = 1000)
scalar specify number of principal components (default = 5)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
show results plots (default = T)
J. D. Tucker and D. Yarger, “Elastic Functional Changepoint Detection of Climate Impacts from Localized Sources”, Envirometrics, 10.1002/env.2826, 2023.