Learn R Programming

fdasrvf (version 2.3.6)

horizFPCA: Horizontal Functional Principal Component Analysis

Description

This function calculates vertical functional principal component analysis on aligned data

Usage

horizFPCA(warp_data, no = 3, var_exp = NULL, ci = c(-1, 0, 1), showplot = TRUE)

Value

Returns a hfpca object containing

gam_pca

warping functions principal directions

psi_pca

srvf principal directions

latent

latent values

U

eigenvectors

vec

shooting vectors

mu

Karcher Mean

Arguments

warp_data

fdawarp object from time_warping of aligned data

no

number of principal components to extract

var_exp

compute no based on value percent variance explained (example: 0.95) will override no

ci

geodesic standard deviations (default = c(-1,0,1))

showplot

show plots of principal directions (default = T)

References

Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.

Examples

Run this code
hfpca <- horizFPCA(simu_warp, no = 3)

Run the code above in your browser using DataLab