horizFPCA: Horizontal Functional Principal Component Analysis
Description
This function calculates vertical functional principal component analysis
on aligned data
Usage
horizFPCA(warp_data, no = 3, var_exp = NULL, ci = c(-1, 0, 1), showplot = TRUE)
Value
Returns a hfpca object containing
gam_pca
warping functions principal directions
psi_pca
srvf principal directions
latent
latent values
U
eigenvectors
vec
shooting vectors
mu
Karcher Mean
Arguments
warp_data
fdawarp object from time_warping of aligned data
no
number of principal components to extract
var_exp
compute no based on value percent variance explained (example: 0.95)
will override no
ci
geodesic standard deviations (default = c(-1,0,1))
showplot
show plots of principal directions (default = T)
References
Tucker, J. D., Wu, W., Srivastava, A.,
Generative Models for Function Data using Phase and Amplitude Separation,
Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.