This function calculates amplitude and phase joint functional principal component analysis on aligned data
jointFPCA(
warp_data,
no = 3,
var_exp = NULL,
id = round(length(warp_data$time)/2),
C = NULL,
ci = c(-1, 0, 1),
srvf = TRUE,
showplot = TRUE
)
Returns a list containing
srvf principal directions
f principal directions
latent values
coefficients
eigenvectors
mean psi function
mean g function
point use for f(0)
optimized phase amplitude ratio
fdawarp object from time_warping of aligned data
number of principal components to extract (default = 3)
compute no based on value percent variance explained (example: 0.95)
will override no
integration point for f0 (default = midpoint)
balance value (default = NULL)
geodesic standard deviations (default = c(-1,0,1))
use srvf (default = TRUE)
show plots of principal directions (default = T)
Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J. S., May 2011. Registration of functional data using fisher-rao metric, arXiv:1103.3817v2.
Jung, S. L. a. S. (2016). "Combined Analysis of Amplitude and Phase Variations in Functional Data." arXiv:1603.01775.
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
jfpca <- jointFPCA(simu_warp, no = 3)
Run the code above in your browser using DataLab