Learn R Programming

fdasrvf (version 2.3.6)

joint_gauss_model: Gaussian model of functional data using joint Model

Description

This function models the functional data using a Gaussian model extracted from the principal components of the srvfs using the joint model

Usage

joint_gauss_model(warp_data, n = 1, no = 5)

Value

Returns a fdawarp object containing

fs

random aligned samples

gams

random warping function samples

ft

random function samples

qs

random srvf samples

Arguments

warp_data

fdawarp object from time_warping of aligned data

n

number of random samples (n = 1)

no

number of principal components (n=4)

References

Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.

Jung, S. L. a. S. (2016). "Combined Analysis of Amplitude and Phase Variations in Functional Data." arXiv:1603.01775.

Examples

Run this code
out1 <- joint_gauss_model(simu_warp, n = 10)

Run the code above in your browser using DataLab