This function computes Confidence bounds for shapes using elastic metric
shape_CI(
beta,
a = 0.95,
no = 5,
Nsamp = 100,
mode = "O",
rotated = TRUE,
scale = TRUE,
lambda = 0,
parallel = TRUE
)
Return shape confidence intervals
Array of sizes \(n \times T \times N\) describing \(N\) curves of dimension \(n\) evaluated on \(T\) points
confidence level (default = 0.95)
number of principal components (default = 5)
number of functions to generate (default = 100)
Open ("O"
) or Closed ("C"
) curves
Optimize over rotation (default = TRUE
)
scale curves to unit length (default = TRUE
)
A numeric value specifying the elasticity. Defaults to 0.0
.
enable parallel processing (default = T)
J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, “A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data,” Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.