vertFPCA: Vertical Functional Principal Component Analysis
Description
This function calculates vertical functional principal component analysis
on aligned data
Usage
vertFPCA(
warp_data,
no = 3,
var_exp = NULL,
id = round(length(warp_data$time)/2),
ci = c(-1, 0, 1),
showplot = TRUE
)
Value
Returns a vfpca object containing
q_pca
srvf principal directions
f_pca
f principal directions
latent
latent values
coef
coefficients
U
eigenvectors
id
point used for f(0)
Arguments
warp_data
fdawarp object from time_warping of aligned data
no
number of principal components to extract
var_exp
compute no based on value percent variance explained (example: 0.95)
will override no
id
point to use for f(0) (default = midpoint)
ci
geodesic standard deviations (default = c(-1,0,1))
showplot
show plots of principal directions (default = T)
References
Tucker, J. D., Wu, W., Srivastava, A.,
Generative Models for Function Data using Phase and Amplitude Separation,
Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.